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ABSTRACT
Analysis of f-mode frequencies has provided a measure of the radius of the Sun which is lower, by a few hundredths per cent,
than the photospheric radius determined by direct optical measurement. Part of this difference can be understood by recognizing
that it is primarily the variation of density well beneath the photosphere of the star that determines the structure of these
essentially adiabatic oscillation modes, not some aspect of radiative intensity. In this paper we attempt to shed further light
on the matter, by considering a differently defined, and dynamically more robust, seismic radius, namely one determined from
p-mode frequencies. This radius is calibrated by the distance from the centre of the Sun to the position in the subphotospheric
layers where the first derivative of the density scale height changes essentially discontinuously. We find that that radius is more-
or-less consistent with what is suggested by the f modes. In addition, the interpretation of the radius inferred from p modes leads
us to understand more deeply the role of the total mass constraint in the structure inversions. This enables us to reinterpret the
sound-speed inversion, suggesting that the positions of the photosphere and the adiabatically stratified layers in the convective
envelope differ nonhomologously from those of the standard solar model.
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1 INTRODUCTION

Solar oscillation frequencies have been measured very accurately
from observations from space missions and ground-based networks.
The estimated relative errors in some of the frequencies are now as
low as the order of 10−6. The high-precision data enable us to per-
form inverse calculations for the Sun’s seismically accessible struc-
ture variables, such as sound speed and density. These are com-
monly accomplished by characterizing in some way the differences
between the Sun and a theoretical reference model, which are usu-
ally presumed to be small enough for linearization to be valid. We
note that the smaller are the observational errors, the larger is the
number of the properties that we should take into account when car-
rying out the inversions. An example is the error in the solar radius,
which is the principal issue to which this paper is addressed.

For structure inversions it is conventionally assumed that the to-
tal radius of the reference model is exactly equal to that of the Sun.
This assumption should generate no significant error as long as the
uncertainties in the eigenfrequencies are much larger than those in
the solar radius. However, that is no longer the case. An example is
a measure of the solar radius derived from an analysis of f-mode fre-
quencies from the Solar Oscillations Investigation (SOI)/Michelson
Doppler Imager (MDI) instrument (Scherrer et al. 1995), on the So-
lar and Heliospheric Observatory (SOHO) space mission, obtained
by Schou et al. (1997); their procedure was to scale the f-mode fre-
quencies of the standard solar model S of Christensen-Dalsgaard
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et al. (1996) to the observations by adjusting R in the approximate
asymptotic f-mode dispersion relation ω2 =

√
l (l + 1)GM⊙/R3,

whereω, l, G and M⊙ mean the angular eigenfrequency of the mode,
the spherical degree of the mode, the gravitational constant and the
total mass of the Sun, respectively. The resulting ‘photospheric’ ra-
dius turned out to be about 0.3 Mm lower than the conventional pho-
tospheric value, 695.99 Mm (Allen 1973), of the time; it has recently
been adopted as an IAU standard unit, the nominal solar conver-
sion constant for the radius: RN

⊙
= 695.7 Mm (Prša et al. 2016).

Here we call it the solar ‘f-scaled radius’, Rf. Antia (1998) has also
determined an f-scaled radius, using frequencies obtained from the
GONG network (Harvey et al. 1996), finding it to be lower than the
conventional value by 0.03 per cent, which corresponds to 0.2 Mm.
Basu (1998) then demonstrated how these apparently tiny differ-
ences indeed have considerable influence on inversions for sound
speed; although the surface helium abundance and the depth of the
convection zone are hardly affected.

Brown & Christensen-Dalsgaard (1998) have revised the photo-
spheric radius, obtaining it almost directly from the location of the
inflexion point in the limb intensity; they used two different model
atmospheres to estimate the height of the inflexion point above the
photosphere, with an essentially consistent outcome of 0.5 Mm.
Their result, which has been adopted by Cox (2000), is smaller, by
0.07 per cent (0.5 Mm), than the earlier value quoted by Allen (1973)
(see Table 1), and is even smaller than the f-scaled radii inferred
by Schou et al. (1997) and Antia (1998). Subsequently, Haberreiter
et al. (2008) also estimated the inflexion-point height using yet an-
other model atmosphere. They concluded that it is only 0.33 Mm
above the photosphere, leading to a photospheric radius closer to the
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Table 1. Global quantities concerning the structure of the Sun and their relative errors. Here, Rph means the photospheric radius, and Rf
is the f-scaled radius (subject to estimated systematic errors), as discussed in the text. The last row presents the main result of this paper,
the p-scaled radius, Rp (quoted with 3-σ statistical errors).

Quantity Value Relative error Reference

GM⊙ (1.32712440041 ± 0.0000000001) × 1026 cm3 s−2 8 × 10−11 Folkner et al. (2009)

G (6.67408 ± 0.00031) × 10−8 dyn cm2 g−2 5 × 10−5 Mohr et al. (2016)

Rph 695.99 ± 0.07 Mm 1 × 10−4 Allen (1973)
695.508 ± 0.026 Mm 4 × 10−5 Brown & Christensen-Dalsgaard (1998)
695.658 ± 0.140 Mm 2 × 10−4 Haberreiter et al. (2008)

Rf 695.68 ± 0.03 Mm 4 × 10−5 Schou et al. (1997)
695.787 Mm – Antia (1998)

Rp 695.78 ± 0.16 Mm 2 × 10−4 this work

f-scaled radius determined by Schou et al. (1997). They claimed that
their numerical coincidence reconciles the discrepancy between the
f-scaled radius and the conventional value of the radius quoted by
Allen (1973). However, the absence of an explanation of why the
earlier and essentially identical (albeit with a different model atmo-
sphere) comparison by Brown & Christensen-Dalsgaard (1998) led
to a different result must surely render that claim premature.

Evidently, analyses are now sufficiently precise to exhibit signif-
icant differences between radii determined from different structural
properties. Further progress therefore requires appropriate distinc-
tions to be made. The photospheric radius, however defined, depends
on equilibrium solar models that involve radiative transfer, which is
not directly accessible to seismic probing; the f-scaled radius is at
least an adjustment that depends on a dynamically pertinent prop-
erty of the hydrostatic structure. Additionally, one can define an f-
mode radius as that which renders the approximate dispersion rela-
tion quoted above almost exact. It is essentially the distance from
the centre to the position of the peak in the distribution of kinetic
energy density of each f mode. That depends on the stratification
of only dynamically pertinent variables, principally density (Gough
1993); it is a weakly increasing function of degree l. It is noteworthy
that these f-mode radii are well below the subphotospheric supera-
diabatic boundary layer, which is located about 0.08 Mm below the
photosphere in model S. In fact, we can estimate the f-mode radii di-
rectly from the density stratification of model S to be about 11 Mm
and 4 Mm below the photosphere for l = 100 and 300, respectively.
One might have suspected it to be possible to identify a unique lim-
iting f-mode radius by attempting to extrapolate to infinite l an ex-
tended asymptotic relation (e.g. Gough 1993; Dziembowski et al.
2001) accounting for the diminishing vertical extent of the dominat-
ing dynamics, at least if density were to vanish at the surface, as
it does in a polytrope. However, although viewed from the interior
the true structure appears to approach such a vanishing situation,
located at what we might call a phantom surface (analagous to the
phantom acoustic singularity which we address at the beginning of
the Section 2), its true behaviour is to extend beyond that surface
into the outer atmosphere where the acceleration due to gravity de-
creases and where the energy density of the mode might even in-
crease, causing the apparent limiting radius to vary with the range
of l adopted for the extrapolation (e.g. Rosenthal & Gough 1994;
Rosenthal & Christensen-Dalsgaard 1995). Moreover, fluid motion
associated with turbulence or other high-degree oscillations is likely
to destroy horizontal coherence.

Solar-cycle variation in the f-scaled radius has also been stud-

ied (Antia et al. 2000; Dziembowski et al. 1998, 2000, 2001; An-
tia 2003); the results are controversial, as are reported variations in
the direct measurement of the photospheric radius (cf. Gough 2001).
Lefebvre & Kosovichev (2005) and Lefebvre et al. (2007) actually
inverted the temporal change of the f-mode frequencies to detect
nonhomologous solar-cycle variation in the structure of the subsur-
face layers down to about 97 per cent of the photospheric radius. It
should be noted, however, that they neglected the contribution of the
near-surface effect of turbulence and magnetic fields to the observed
f-mode frequencies (as Lefebvre et al. (2007) admit explicitly). This
assumption needs to be checked carefully in further studies.

Schou et al. (1997) also point out that we should bear in mind the
possibility that the f-mode frequencies could be significantly influ-
enced by unaccounted processes in the superadiabatic layer of the
convection zone, such as are produced by turbulence and the pres-
ence of a magnetic field, which are notoriously ill understood. They
might be more susceptible to such processes than are the p modes
on account of their smaller inertiae, although they are certainly less
sensitive than p modes to the mean stratification because they are
very nearly uncompressed (Gough 1993). Dziembowski et al. (2001)
take some account of the surface effects on f-mode frequencies by
assuming a particular dependence on frequency and mode inertia. It
is not obvious whether the dependence can be justified from a physi-
cal point of view. In any case, it is true that p modes react differently
from f modes to the processes in the convective boundary layer. We
are therefore motivated to determine a solar radius from p-mode fre-
quencies alone, for that is directly pertinent to seismic inferences of
the interior structure obtained from p-mode inversions. We show in
this paper that that is possible.

Richard et al. (1998) extended a formula for structure inversion
to take account of the difference between the radii of the Sun and
the reference model. By radius they mean the distance between the
centre and the temperature minimum. The main aim of their study
was to constrain the helium abundance more tightly; in so doing they
obtained estimates of radius difference that were so sensitive to the
mode sets used that they concluded it is impossible to determine the
radius of the Sun at the 10−4 accuracy level from p-mode frequen-
cies. The present study aims to re-examine this conclusion.

In view of the increasing accuracy of our endeavour, it behoves
us to define more precisely what measure of a solar radius we seek
to determine. Here we adopt a purely seismic definition, which, un-
like the photosphere or some other thermal structure of the atmo-
sphere, such as temperature minimum, can be obtained purely dy-
namically, and in principle is independent of our theoretical refer-
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ence solar model. We offer, in subsection 4.3, various operational
options, whose merits we then discuss.

Another aspect of the present study is the recognition that the rel-
ative errors in the radius of the Sun, and of the gravitational constant,
have hardly ever been taken into account in the integral constraints
relating oscillation frequencies to the Sun’s seismic structure, even
though these errors are no longer negligible compared with the er-
rors in the frequencies. Brown & Christensen-Dalsgaard (1998) and
Haberreiter et al. (2008) have recently revised the estimates of the
relative error in the Sun’s photospheric radius to 4×10−5 and 2×10−4,
respectively, as recorded in Table 1. Moreover, the relative uncer-
tainty in the gravitational constant, which is one of the most poorly
measured physical constants, is on the order of 10−5. Therefore we
have to revise the inversion procedure so that it treats both the errors
in the oscillation frequencies and those in global quantities consis-
tently. Fortunately, we need not worry about any uncertainty in the
Sun’s mass M⊙ per se, because it is always multiplied by the grav-
itational constant G in the equations of helioseismic inversion (see
Section 3); the quantity GM⊙ has much smaller errors than any of
the observed oscillation frequencies, and is indeed one of the best
determined, by radar-echo measurements of the planetary motion
(cf. Table 1), constants in astronomy.

As we have already announced, the primary purpose of this paper
is to formulate a well defined method to estimate a radius of the Sun
using p-mode frequencies. As we shall see, this requires including
the requirement that the total mass M (actually GM) agrees with ob-
servation. We discuss the physical meaning of this radius, which we
call the p-scaled radius, Rp, in the light of the f-scaled radius Rf. The
secondary purpose is to revise the inversions for the structure of the
Sun by taking account of both the differences and the uncertainties
in what one might call the total radius R (in a sense that we shall
propose later) and the gravitational constant G. To this end, we need
to extend the inversion formulae so that they take account of these
differences: the total radius R and the gravitational constant G (and,
for completeness, the product GM of the gravitational constant and
the total mass). This not only allows us to revise the structure inver-
sions, but also enables us to perform a direct inversion for the differ-
ence δR between the total radii of the Sun and the reference model.
Properly executed, the outcome provides a measure of a solar radius
that is independent of any reference theoretical model. That prop-
erty is a property of only the dynamically pertinent variables, which
are not directly accessible to astronomical observation. Accordingly,
we relate Rp to the photospheric radius Rph, whose value depends
on radiative transfer, which is not itself dynamically relevant. That
necessarily involves comparison with a theoretical solar model. We
adopt expressions (derived in Sections 4.3 and 4.4) to identify Rp,
which is obtained by scaling our reference model, namely model S.

The rest of this paper consists of 8 sections. We first present in
Section 2 physical pictures about seismic radii. In Section 3, we ex-
tend the formulae for the structure inversions to include the effect of
the differences in the radius R and the gravitational constant G. In
Section 4, we propose a method to infer the radius difference based
on the p-mode frequencies, and give an interpretation of the p-scaled
radius, Rp; Section 5 describes an accompanying inversion proce-
dure for the sound-speed and density structures. In Section 6 we
examine how well the prescribed methods work based on the known
structures of theoretical models, and we estimate the p-scaled radius
using the real data in Section 7. Section 8 is a discussion of our
proposed procedure, and our conclusions are summarized briefly in
Section 9. Preliminary results of this paper have been reported by
Takata & Gough (2001, 2003).

Before proceeding, we make the obvious remark that without a

well defined procedure for characterizing the Sun’s radius in terms
of its seismologically accessible structure, its unambiguous value
cannot be determined by seismology alone. However, it is possible
to determine a radius change by scaling the independent variable
used in a reference model to produce a representation that is in some
sense close to the target structure. As we explain below, that is what
our inversion procedure achieves automatically. Here we wish to re-
late the radius to the structure throughout the deep interior, rather
than just to the near-surface layers which are severely susceptible to
uncertainties in the physics. This is likely to be more robust from
p modes than from f modes. We demonstrate below how that is ac-
complished.

2 SEISMIC RADII

When we embarked on our investigation we thought to provide a
well defined dynamically pertinent radius of the Sun, determined
from p-mode frequencies. The f modes were ignored because they
are relatively more concentrated near the surface, and are likely to
be more influenced by the vagaries of the turbulence in the upper
boundary layer of the convection zone. Noting that near the sur-
face the squared sound-speed declines almost linearly with radius
(cf. Balmforth & Gough 1990), as it does also in a complete plane-
parallel polytrope whose pressure and density vanish together at its
surface, we had in mind representing the Sun by a near-polytropic
analogue whose effective surface can be determined purely dynam-
ically. As has been evident since early studies of atmospheric os-
cillations (e.g. Lamb 1911; Lamb 1932), the polytropic surface is a
singular point of the governing dynamical equations. In reality, the
solar envelope does not resemble a polytrope as far out as the lat-
ter’s surface, but undergoes a transition to almost isothermal strat-
ification near the photosphere. However, because what the oscilla-
tions experience is mainly the form of the declining pressure and
density beneath their upper turning point, where ωac = ω, they be-
have as though a phantom singularity actually exists. Therefore, pro-
vided the mode frequencies are considerably lower than the acoustic
cut-off, the near-isothermal atmosphere is of lesser dynamical im-
port, as has been demonstrated explicitly by Christensen-Dalsgaard
& Gough (1980). Consequently we had in mind defining an acous-
tic solar surface as the location of either the phantom singularity,
which we call Rs, or the location Rac of the region of extremely
rapid variation of ωac (see Fig. 1), which essentially identifies the
upper turning points. However, although it is possible to establish
a mathematical procedure to determine such locations, the outcome
does not relate in a straightforward way to what astrophysicists can
find useful. So instead we have decided simply to scale the refer-
ence model by a factor determined from an integral relation (derived
in Section 4.3) for Rac, and then adopt the resulting photospheric ra-
dius as Rp, namely where the matter temperature equals the effective
temperature. In other words, we assume

Rp − Rph,r

Rph,r
=
δRac

Rac,r
, (1)

where the subscript r denotes quantities pertaining to the reference
model, and δ means the difference between the Sun and the refer-
ence model. Our result is therefore not strictly based on dynamics
alone. But since the phantom acoustic surface and the turning sur-
face, especially the latter, are very close to the photosphere, any error
in the thermal stratification of the reference induces an error hardly
greater than that of our derived scaling factor. The meanings of the
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Table 2. Meanings of various radii.

radius meaning

photospheric radius Rph distance from the solar centre to the pho-
tosphere, which is characterized as the
layer at optical depth unity at a partic-
ular (visible) wavelength: a commonly
used value is 500 nm. Alternatively, if the
atmosphere is in local thermodynamic
equilibrium, the photosphere is the layer
where the local temperature is equal to
the effective temperature.

seismic radius meaning

f-mode radius distance from the solar centre to the cen-
tre of energy of each f-mode (essentially
the peak in the kinetic-energy distribu-
tion)

f-scaled radius Rf photospheric radius calibrated by f-mode
radii

phantom singularity Rs distance from the centre to the apparent
zero point of the squared sound-speed
that can be located (above the photo-
sphere) by extrapolating the almost linear
distribution in the adiabatically stratified
layers of the convective envelope

acoustic radius Rac distance from the centre to the subpho-
tospheric layer where the acoustic cut-
off frequency changes extremely rapidly
(essentially a discontinuity in the first
derivative of the density scale height)

p-scaled radius Rp photospheric radius calibrated by Rac

photospheric radius and the seismic radii, which are introduced in
Sections 1 and 2, are summarized in Table 2.

If both the target structure and the reference model have simi-
lar density and sound-speed profiles near their upper turning points,
the p-scaled radius difference could be identified with the differ-
ence in the position of the upper turning points themselves. The
upper-tuning points of p modes are determined by an acoustic cut-
off frequency, one of which, when Lagrangian pressure perturbation
is adopted for describing the mode, is given in terms of the adiabatic
sound-speed c, the density scale height H and the absolute radius r
(i.e, the distance from the centre) by

ωac:=
c

2H

(
1 − 2

dH
dr

) 1
2

(2)

(e.g. Deubner & Gough 1984; Christensen-Dalsgaard & Berthomieu
1991).

The upper turning point of a radial mode is located where ωac is
equal to the angular frequency ω = 2πνn,0 of the mode. Here, νn,0

is the cyclic frequency of the radial mode with radial order n. It is
where propagation gives way to evanescence. It is also the approxi-
mate turning location for nonradial modes, except when the degree
l is very large (Gough 1993). Other representations of the acoustic
cut-off frequency corresponding to other dependent (and indepen-
dent) variables are similar, and are barely distinguishable within the
context of wave reflection. The value pertaining to the Lagrangian
pressure perturbation, given by equation (2), is plotted in Fig. 1. Be-
cause, as in the realistic structure of the Sun, scale heights vary ex-
tremely rapidly in a thin layer between the uppermost part of the con-
vection zone and the base of the isothermal atmosphere, the acous-
tic cut-off frequencies exhibit a sharp, almost discontinuous, incline,

presenting an effective wall obstructing further outward propagation.
Since it is this wall which determines the upper turning points of
the high-frequency p-modes observed in the Sun, the distance be-
tween the solar centre and this wall should essentially be regarded
as the radius, Rac, out to which p modes probe. To be more precise,
we can define Rac to be the location of the maximum of |d2H/dr2|,
where dH/dr changes almost discontinuously, and that can be used
to calibrate the p-scaled radius, Rp. We call Rac the acoustic radius.1

Although, from a physical point of view, Rs can be also regarded as
another kind of acoustic radius, we choose to attribute the name to
only Rac in this paper, because it plays a greater role than Rs does.
It is a representative value of the upper turning points of p modes,
the positions of which are increasing functions of mode frequency.
However, the rapid variation in ωac with height near the surface ren-
ders the turning points essentially independent of the mode set
used in the analysis. In the example shown in Fig. 1, p modes of
frequency higher than about 2.3 mHz (and below 5.2 mHz) have al-
most the same upper turning point at r/Rph ≈ 0.9999. Therefore any
mode set that includes some of such high-frequency modes should
give the same p-scaled radius.

According to the above interpretation, we may say that the acous-
tic radius, Rac, and the photospheric radius share their origin because
the rapid change in the density scale height H (and its derivative)
near the top of the convection zone is accompanied by the corre-
sponding change in the optical depth. In fact, the position of the
vertical wall in Fig. 1 approximately corresponds to the base of the
photospheric layer in a typical atmospheric model of the Sun (cf.
Cox 2000). That is much higher than the position of the peak in the
distribution of the kinetic energy density of typical f modes. There-
fore Rac is a better probe of the photospheric radius of the Sun than
is Rf.

3 THE PRINCIPLES OF THE STRUCTURE INVERSION,
AND THE RADIUS DIFFERENCE

3.1 Inversion formulae that take account of radius and mass
differences

3.1.1 Relation between the frequency difference and the structure
difference

Typically, helioseismological inversion aims at obtaining a repre-
sentation of the difference in structure between the Sun (or a target
theoretical model) and a reference model that is believed to be suf-
ficiently close to the target for linearization to be valid. The small
differences in the structure variables are derived from integral equa-
tions which relate the structure differences to the eigenfrequency dif-
ferences. The weighting functions in the integrands that multiply the
differences (either absolute or relative) in the structure variables are
called data kernels; they depend on both the eigenfunctions and the
equilibrium structure, and are obtained by perturbing the full inte-
gral expressions for the eigenfrequencies. In principle the integration
should extend over the entire domain occupied by the star: formally
that is to infinity, but in practice it is adequate to truncate the outer
limit to a surface so far beyond the region of propagation of the os-
cillation modes that any appropriate boundary condition contributes
negligibly to the integrals. However, if the target were to be another

1 Although the term “acoustic radius” is widely accepted in helioseismology
to mean the acoustic travel time across the solar radius, there should be no
confusion here with the present definition, which has dimension of length.
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Figure 1. Acoustic cut-off frequency ωac associated with the Lagrangian
pressure-perturbation eigenfunction, defined by equation (2), in the surface
layers of solar model S of Christensen-Dalsgaard et al. (1996), plotted as a
continuous blue curve against fractional radius x = r/Rph, where Rph stands
for the photospheric radius. Between about x = 0.99974 and x = 0.99988,
ωac is imaginary, and formally wave propagation can occur at all frequen-
cies. The continuous orange curve is the corresponding cut-off frequency ad-
justed according to the procedure proposed by Langer (1937) to prevent the
error in the JWKB approximation to the wave equation (which experiences
an appropriately smoothed background state) from approaching divergence
at the phantom singular point at which pressure would vanish, leading to
ωac ≃ c/(2Hp), where Hp is the pressure scale height. The dashed green
curve is the squared adiabatic sound-speed (in units of (6 km s−1)2) and the
dotted red curve is γ1. The almost linear section of the squared sound-speed
below x ≈ 1.0000 could in principle be extrapolated to zero to locate a phan-
tom singularity, as indicated by Balmforth & Gough (1990); however the
deviation from linearity renders the outcome insufficiently precise for our
purposes here. The top of the superadiabatically stratified convection zone is
located at r/Rph ≈ 0.99994.

theoretical model, that model might have a genuine surface at which
pressure, and probably sound speed, vanish. We shall sometimes find
it convenient to speak in terms of such target models when describ-
ing the properties of the inversion procedures. Whether the target is
such a finite model, or a more realistically extended model or the real
Sun, the integral representations of the eigenfrequencies essentially
(that is, to a fair degree of accuracy) satisfy a variational principle
(Ledoux & Walraven 1958; Chandrasekhar 1964), and the perturba-
tions to the eigenfunctions do not appear in the formulae for the ker-
nels. In more realistic situations in which the boundary conditions
appear to preclude a variational principle, one can construct appro-
priate integral expressions for the frequency differences as a pertur-
bation in terms of the eigenfunctions of only the reference model (cf.
Veronis 1959). That suggests that the outcome of the mathematical
process of inversion that does not take explicit account of a potential
radius difference can provide a correct representation of the internal
structure, as we discuss below. However, it does require in addition
a precise definition of a seismic radius in order to establish an ap-
propriate scaling of the reference model.

3.1.2 Optimally localized averages of the structure

In this paper, we adopt optimally localized averaging (OLA) as the
means of representing the structure differences. The averaging ker-
nels are constructed as unimodular linear combinations of the data

kernels, the coefficients an,l having been determined as a trade-off
between the degree of localization and the resultant magnification
of the errors in the frequency data νn,l; the corresponding combi-
nations of the data, Σn,lan,lδνn,l/νn,l, are, to within data errors, aver-
ages of the true differences between the structures of the target star
and the reference model. Such combinations were used originally in
geophysics just to assess the resolving power of Whole-Earth data
(Backus & Gilbert 1968). But here we use the averages to represent
the structural differences themselves, bearing in mind that they are
not pointwise values but in some sense a smoothed version of the
true differences. Treating them as pointwise values, which has been
tempting to some, does not normally lead to functions that satisfy the
integral relations from which they were constructed, which is why
they were not used by geophysicists, at least in the early days, to
represent the functions themselves. Functions that do satisfy the in-
tegral relations can easily be constructed simply by insisting, subject
to certain demands introduced to render the outcome determinate,
that the functions have the correct averages. One way to accomplish
that is simply to determine the smoothest function that satisfies the
averaging constraints. This is a typical problem in calculus of varia-
tions with constraints, which can be solved by any standard method.
At this stage of our discussion, for the purposes of appreciating the
outcome of the inversion it is not necessary to know how the aver-
aging coefficients an,l are determined. All that is needed, aside from
the averages themselves, is to know the kernels over which the struc-
ture variables are averaged, and, of course, the uncertainties in those
averages resulting directly from the uncertainties in the measured
oscillation frequencies.

3.1.3 Formulae for the frequency difference taking account of
radius and mass differences

As we mentioned in Section 1, in conventional helioseismological
inversions it is assumed that there is no difference between the total
radii R of the reference model and of the Sun, nor any error in the
gravitational constant G. In a similar fashion we obtain for the fre-
quency differences between the Sun and the reference model, which
constitute the data to be inverted:
δνn,l

νn,l
=

∫
K(n,l)
ψ,ρ

δxψ

ψ
dx +

∫
K(n,l)
ρ,ψ

δx(Gρ)
Gρ

dx + S n,l , (3)

for each mode. The details of the derivation of this equation are given
in appendix A. The meanings of the symbols in equation (3) are as
followings: νn,l is the cyclic frequency of the mode of radial order n
and spherical degree l – we concentrate on the spherically averaged
structure, and therefore interpret νn,l as the uniformly weighted av-
erage over azimuthal order m of the singlet frequencies νn,l,m (e.g.
Ritzwoller & Lavely 1991) – ψ is defined by

ψ :=
c
r

; (4)

ρ is density; x is the fractional radius r/R, where R is a fiducial
(acoustic) radius of the Sun whose meaning we discuss later; δx f
means the difference between some structural variable f pertaining
to the Sun and to the reference model at the same fractional radius x;
and K(n,l)

ψ,ρ and K(n,l)
ρ,ψ are data kernels (Fréchet derivatives) for δxψ/ψ

and δx(Gρ)/(Gρ) respectively; S n,l is called a surface term, and is in-
troduced to take account of uncertainties in the near-surface regions
of the Sun (cf. Dziembowski, Pamyatnykh & Sienkiewicz 1990). We
adopt the notation in this paper that, when no explicit bounds are in-
dicated the domain of integration ranges over the entire mass of the
structure.

We point out the following important features of equation (3):
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6 M. Takata and D. O. Gough

(i) the expressions for the kernels K(n,l)
ψ,ρ and K(n,l)

ρ,ψ are essentially
the same as those in the conventional structure inversions, which are
derived under the assumption that there is no difference in the global
quantities R and G (e.g. Gough & Thompson 1991) ;

(ii) the differences δxψ/ψ and δx(Gρ)/(Gρ) between the Sun and
the reference model are taken not at the fixed radius r but at the fixed
fractional radius x, and are regarded as functions of x;

(iii) the difference in the fiducial radius R is present implicitly
in the expressions through the difference operator δx at fixed x, al-
though here we give no physical meaning to R – at this stage it is
just a scale factor – we attempt to provide a physical interpretation
later;

(iv) density ρ is multiplied by the gravitational constant G wher-
ever it appears;

(v) for this particular choice of structure variables, namely ψ and
Gρ, neither the difference in the total mass M nor that in GM ap-
pears explicitly in the expression; this is not the case for all choices
of structure variables, although the current choice is not unique in
this respect (see Appendix C); we emphasize that the total mass con-
straint (5) was not incorporated explicitly into the derivation of these
data kernels. Therefore equation (3) is applicable to asteroseismol-
ogy too. Gough & Kosovichev (1993) have demonstrated its use in
that situation, where additional, non-seismic, data to estimate the ra-
dius and mass of the star are required.

3.1.4 Total mass constraint

The total mass constraint,

M =
∫

4πr2ρ dr , (5)

which we usually adopt to ensure that the inversions are consistent
with the observed value of the solar mass, can similarly be extended
to include the difference in the total radius R and the product of the
gravitational constant and the total mass; it may be written:

δR
R
=
δ(GM)
3GM

−

∫
4πR3 x2ρ

3M
δx(Gρ)

Gρ
dx , (6)

in which δR and δ(GM) appear explicitly. Since the form of equation
(6) is similar to that of equation (3), it is common practice to treat all
of these equations in like manner, with no caution as to the different
structural connotation. On the other hand, in the present analysis, we
explicitly distinguish equation (6) from equation (3) based on their
physical meanings. This is essential to discuss the radius difference
between the target structure and the reference model.

3.2 Annihilator relation associated with a uniform scaling

So far we have offered no insight into the physical meaning of R in
equations (3) and (6). To assist thinking, we first draw attention to
the following annihilator relation:∫

K(n,l)
ψ,ρ

d lnψ
d ln r

dx +
∫

K(n,l)
ρ,ψ

d ln ρ
d ln r

dx = 0 , (7)

for any n and l. Appendix B provides a proof of this relation,
which is closely associated with the homology relation that pre-
serves adiabatic eigenfrequencies: if the radial coordinate is uni-
formly stretched by a constant factor λ according to

r → λr , (8)

and the profiles of the other seismologically accessible variables are
scaled as

ψ(r)→ ψ(λr) (9)

Gρ(r)→ Gρ(λr) , (10)

R→ λR (11)

and

GM → λ3GM , (12)

the eigenfrequencies νn,l are unchanged. There is an implicit as-
sumption in this argument that K(n,l)

ρ,ψ = 0 at the upper boundary of
the integral in equation (7). This homology relation can be regarded
as a generalization of the popular statement in the theory of stellar
pulsation that the eigenfrequency of the radial fundamental pulsation
mode of a star is proportional to

√
GM/R3. We should stress that this

statement is only approximately true, whereas the homology relation
is exact for all linearized adiabatic oscillations.

The homology relation demonstrates the important fact that there
exists a series of (isospectral) structures that cannot be distinguished
by their eigenfrequencies alone. Owing to this characteristic, it is ev-
ident that there is an ambiguity of the stretching of the radial coordi-
nate in any outcome of inversions that disregard the total mass con-
straint. The isospectral structures resulting from only such stretching
have different masses, so one can isolate an acceptable one accord-
ing to its total mass. However, there remains a formally infinite set of
seismologically acceptable structures, not necessarily with the same
radius, whose differences lie in the annihilator of the data kernels.

In practice, however, one obtains results from OLA with hardly
an apparent ambiguity, whether the mass constraint is included or
not. Therefore any stretching factor appears to be determined im-
plicitly in the inversion procedure. We need to know which specific
value is chosen. For example, were it the case that the target struc-
ture and the reference model were actually related strictly homolo-
gously in the sense specified by equations (8)–(12), then δνn,l = 0
for all modes, and any linearized inversion in which the inferences
are expressed by a linear combination of the frequency differences
would result in there being no difference between (at least the local-
ized averages of) the target and the reference. This means that the
homology factor λ in equations (8)–(12) is implicitly detected and
is properly related to the scale-factor difference δR in the inversion
procedure, with δxψ = 0, δx(Gρ) = 0 in equation (3). However, we
do not know the value of δR at this stage. This example suggests that
there is some principle that determines the scale factor R even if the
differences are not homologous.

Here we make a remark about the conventional method of struc-
ture inversion, which usually assumes no difference between the
radii of the target structure and the reference model. We can validly
reinterpret conventional inversions if they are performed without ex-
plicit use of the total mass constraint. In that case, we should replace
the labels, setting δrc/c and δrρ/ρ to δxψ/ψ and δx(Gρ)/(Gρ), re-
spectively. Then we do not know the radius difference, which is re-
quired for the operator δx to be well defined, until we carry out sepa-
rately the additional inversion for δR using the total mass constraint.

In summary, we have two questions to answer here:

(i) How can we know the stretching factor, λ = 1 + δR/R, that is
implicitly determined in the procedure of the OLA method?

(ii) What kind of principle is operative in the process of deter-
mining an appropriate value of that stretching factor?

We answer question (i) immediately in the following section; ques-
tion (ii) is addressed in Section 4.2.
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3.3 How to determine the radius difference

The total mass constraint (6), which is a physically different con-
dition from the frequency equation (3), immediately gives us an
answer to the first question. Once we have the density profile
δx(Gρ)/(Gρ) without knowing what R, hence x, is, we can substi-
tute this profile into equation (6) to get δR/R. We could also perform
a different inversion for δR/R based on equations (3) and (6), which
will be described in detail in Section 4. From a physical point of
view, we determine the size of the target star, which is otherwise
ambiguous owing to the undetermined stretching of the radial coor-
dinate, by constraining its total mass (actually GM). This answers
question (i). We need to know more about the mathematics behind
the OLA method for the structure, which we discuss in Section 4,
before we can answer question (ii).

3.4 OLA and an annihilator vector

In the OLA method we make inferences about structure variables
such as sound-speed differences in the vicinity of some chosen point
x = xt by constructing new kernelsK (ψ)

ψ,ρ andK (ψ)
ρ,ψ as linear combina-

tions of K(n,l)
ψ,ρ and K(n,l)

ρ,ψ :K (ψ)
ψ,ρ

K
(ψ)
ρ,ψ

 :=
∑
n,l

an,l

K(n,l)
ψ,ρ

K(n,l)
ρ,ψ

 , (13)

and define a localized average of δxψ/ψ asδxtψ

ψ


OLA

:=
∫
K

(ψ)
ψ,ρ(x; xt)

δxψ

ψ
(x) dx

+

∫
K

(ψ)
ρ,ψ(x)

δx(Gρ)
Gρ

(x) dx , (14)

by trying to demand that the averaging kernel K (ψ)
ψ,ρ(x; xt) be local-

ized around x = xt and unimodular (i.e. whose integral is unity),
and that the cross-talk kernelK (ψ)

ρ,ψ(x) is negligibly small everywhere.
The constants an,l are called inversion coefficients (and are distinct
from the components of the annihilator vector a introduced in equa-
tion (17) below). Then

∑
n,l an,lδνn,l/νn,l estimates the localized av-

erage of δxψ/ψ, somewhat, yet, we hope, not unduly contaminated
by δx(Gρ)/(Gρ). As we have pointed out already, there is no need to
enquire how the inversion coefficients an,l are determined (although
we do sketch a commonly adopted procedure in Section 5); to ap-
preciate the meaning of the inversion all that is necessary is to know
the averaging kernel at each target location xt and the correspond-
ing cross-talk kernel. Similarly, one can attempt to construct a cor-
responding localized average of δx(Gρ)/(Gρ) with a localized uni-
modular kernel K (ρ)

ρ,ψ and negligible cross-talk kernel K (ρ)
ψ,ρ given by

K (ρ)
ψ,ρ

K
(ρ)
ρ,ψ

 :=
∑
n,l

bn,l

K(n,l)
ψ,ρ

K(n,l)
ρ,ψ

 . (15)

Were the averages to be well localized everywhere, one could at-
tempt to construct plausible pointwise representations of δxψ/ψ and
δx(Gρ)/(Gρ) to estimate the cross-talk integrals, and so iterate on the
procedure for determining the optimally averaged differences given
by equation (14) and the corresponding equation for δx(Gρ)/(Gρ).
In practice that is not entirely straightforward for achieving the pre-
cision required in this endeavour.

We refer to the space spanned by the kernels (K(n,l)
ψ,ρ ,K

(n,l)
ρ,ψ ) as the

kernel space; its orthogonal complement is called the annihilator.
Because relation (7) can be interpreted as the vanishing of the inner

product of the kernel vectorsK(n,l)
ψ,ρ

K(n,l)
ρ,ψ

 (16)

and the annihilator vector

a :=


d lnψ
d ln r
d ln ρ
d ln r

 (17)

for all modes, we can say that the kernel vectors given by equations
(13) and (15) are orthogonal to the annihilator vector a. In fact, we
easily find from equation (7) that∫
K

(ψ)
ψ,ρ

d lnψ
d ln r

dx +
∫
K

(ψ)
ρ,ψ

d ln ρ
d ln r

dx

=
∑
n,l

an,l

(∫
K(n,l)
ψ,ρ

d lnψ
d ln r

dx +
∫

K(n,l)
ρ,ψ

d ln ρ
d ln r

dx
)

= 0 . (18)

This means that inferences from OLA such as that given by equa-
tion (14), without the total mass constraint (6), are never influenced
by the annihilator vector (17) of the target quantities δxψ/ψ and
δx(Gρ)/(Gρ). We note that at least one component of the annihila-
tor vector (17) is quite large, or even divergent, at the stellar surface
where pressure, density and temperature are all very small. This is
characterized by the fact that the norm

IA(x0) :=
∫ x0

0


(

d lnψ
d ln r

)2

+

(
d ln ρ
d ln r

)2
 dx , (19)

can be extremely large, or even divergent, as x0 approaches its ‘sur-
face’ value, which we denote by xsurf. We are mindful to define xsurf

formally as the vanishing point of the density distribution, recogniz-
ing that its value might be infinite if there were no distinct surface.
If that be so, then IA(xsurf) would also be formally infinite; however,
its role in determining δR/R, as in equation (39) below, is via a non-
divergent limiting process of the ratio of two individually divergent
integrals.

We note that there must exist annihilator vectors other than the
one given by equation (17) that satisfy orthogonality relations sim-
ilar to equation (7). For example, if the kernels of the eigenmodes
included in the structure inversion are all negligibly small in some
region, which typically happens outside of the propagation cavities,
the structure in those regions cannot be probed by the eigenmodes.
Therefore in practice the structure difference in such regions should
be attributed to the annihilator. There are also annihilator vectors
that are large within the propagation cavities, but if a wide variety
of modes are included in the inversions, they are likely to be highly
oscillatory (e.g. Wiggins 1972; Gough 1985).

Finally, we emphasize that, as evinced by equation (3), any com-
ponent of the actual structure-difference vector (δxψ/ψ, δx(Gρ)/Gρ)
that is orthogonal to all the kernel vectors (K(n,l)

ψ,ρ ,K
(n,l)
ρ,ψ ) makes no

contribution to the frequency data δνn,l/νn,l, and so cannot be in-
ferred seismologically. Therefore the seismologically accessible el-
ement of the structure-difference vector must lie in the kernel space,
and can be represented as a linear combination of the kernel vectors,
as in equation (32). This forms the basis of some regularized least-
squares data-fitting inversion procedures. It is also explicit in OLA
(equation(14)). In fact, since the localized averages are totally insen-
sitive to the annihilator vectors included in the structure-difference
vector, the averages can be interpreted as those of only the element
of the difference vector in the kernel space.
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8 M. Takata and D. O. Gough

4 SEISMIC RADIUS INVERSION BASED ON P-MODE
FREQUENCIES

4.1 An inversion for the scale factor

We first describe a method, based on a procedure analogous to the
OLA inversion for the structure variables, to infer the radius differ-
ence defining the scale factor 1 + δR/R.

By making a linear combination of equations (3) and (6) with
coefficients cn,l, we obtain

δR
R
=

∑
n,l

cn,l
δνn,l

νn,l
− C − S +

1
3
δ(GM)

GM
, (20)

in which

C :=
∫
K

(R)
ψ,ρ

δxψ

ψ
dx +

∫
K

(R)
ρ,ψ

δx(Gρ)
Gρ

dx , (21)

and S is the contribution from the surface terms, given by

S :=
∑
n,l

cn,lS n,l . (22)

The symbols K (R)
ψ,ρ and K (R)

ρ,ψ in equation (21) are defined by

K
(R)
ψ,ρ :=

∑
n,l

cn,lK
(n,l)
ψ,ρ (23)

and

K
(R)
ρ,ψ :=

∑
n,l

cn,lK
(n,l)
ρ,ψ +

4πR3 x2ρ

3M
, (24)

respectively. Note that the total-mass constraint is included here.
This formulation is formally similar to the one for the mean-density
inversion by Reese et al. (2012) in asteroseismology. The differences
are that the value of GM is accurately known for the Sun, and that
we adopt ψ and Gρ as the target structure variables, while Reese
et al. adopt ρ and γ1.

The coefficients cn,l are determined as a trade-off between min-
imizing the magnitude of C and limiting the magnification of the
frequency errors, simultaneously preventing S from influencing the
inferences. This is accomplished by minimizing with respect to cn,l

the quantity

χ2
R := αR

∫
(K (R)

ψ,ρ)2 dx + βR

∫
(K (R)

ρ,ψ)2 dx + γRσ
2 (25)

under the condition that a representation of S, which is defined be-
low, vanishes; σ is a formal error (also defined below, by equation
(27)), and αR, βR and γR are adjustable parameters. An estimate of
δR/R is then given by(
δR
R

)
ac

:=
∑
n,l

cn,l
δνn,l

νn,l
± σ , (26)

where we have assumed that δ(GM)/(GM) = 0: we are constructing
a representation of the Sun with precisely the same value of GM as
that of our reference model, although we appreciate that that value
may be in error by an amount of order σGM . The formal error σ is
given by

σ2 :=
∑
n,l

(
cn,lσn,l

)2
+

(
σGM

3

)2
, (27)

in which σGM and σn,l denote the relative observational standard
errors in the product GM⊙ (cf. Table 1) and the frequencies νn,l,
respectively. We recall that (δR/R)ac defines a scaling based on the
acoustic structure of the star, and accordingly we have adopted the
subscript ‘ac’.

In carrying out the radius inversions we take special care with the
surface term by taking account of its leading l dependence (Gough
& Vorontsov 1995; Di Mauro et al. 2002). The explicit expression
we adopt is

S n,l =
1

In,l

F0(νn,l) +
(

l + 1/2
νn,l

)2

F2(νn,l)

 , (28)

where In,l is the mode inertia normalized by that of the radial
mode with almost the same frequency (cf. Christensen-Dalsgaard
& Berthomieu 1991), and the functions F0 and F2 are arbitrary,
and depend only on frequency. Both F0 and F2 are expanded as
series of n0 and n2 Legendre polynomials, respectively, whose ar-
guments are normalized so that the whole range of the frequencies
that are included in the representation corresponds to the interval
[−1, 1]. To ensure that S vanishes, we adopt Lagrange’s method of
undetermined multipliers to obtain the coefficients in the Legendre
expansions during the minimization of χ2

R. The resulting values of
(δR/R)ac, for several values of n0 and n2 , are listed below in Table
4.

Although our formulation does not explicitly distinguish p modes
from f modes (nor, even, g modes), in practice it is not a good idea
to mix both types of modes in the structure and radius inversion,
because the functional form of the surface term for p modes is likely
to be qualitatively different from that for f modes, owing to their
different responses to near-surface perturbations (cf. Gough 1993;
Di Mauro et al. 2002), as we point out in Section 7.

4.2 Interpretation of the inverted δR/R

Although a formal procedure to obtain (δR/R)ac given by equation
(26) has been developed in Section 4.1, we still need to consider
how to interpret the result. To this end we examine the require-
ment of the inversion procedure in Section 4.1 that the contribu-
tion from C to δR/R be rendered negligible (cf. equation (20)). The
outline of the discussion is as follows: though it might appear at
first sight that this requirement can be satisfied easily if the frequen-
cies of a sufficient number of eigenmodes with different characters
are available, it is actually impossible to satisfy it if the annihilator
vector a seriously ‘contaminates’ the relative structure difference,
(δxψ/ψ, δx (Gρ) / (Gρ)); this contamination can be removed only if
the definition of x, or equivalently δR/R, is adjusted appropriately,
and we claim that only in this case does the inversion procedure pro-
vide a meaningful answer; we interpret the outcome of the inversion
given by equation (26) as that value of δR/R that makes the relative
structure difference almost free from the annihilator vector a, as we
now discuss.

Perusal of equation (20) for δR/R reveals that the right-hand side
itself depends on δR, via the difference operator δx that appears in C.
The transformation between δx and δr is given explicitly by

δrc
c

δr(Gρ)
Gρ

 =

δrψ

ψ

δr(Gρ)
Gρ

 =

δxψ

ψ

δx(Gρ)
Gρ

 − δRR a. (29)

It is important to realize that the decomposition on the right-hand
side of equation (29) is in a sense arbitrary, as we discussed in the
introduction. To render it determinate requires another constraint,
which we are free to choose at will. We pay attention to the main as-
sumption upon which equation (26) relies: that with enough modes
of sufficiently diverse variety the contribution from C can be made
negligible; the coefficients cn,l have been determined in such a way as
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to make S vanish, and the uncertainty in GM is much smaller than
that of the other quantities influencing our analysis, so that, aside
from frequency-measurement errors, the term C contaminating the
approximation (26) to equation (20) is all that remains to degrade
the estimate. An essential point is that, because the magnitude of the
annihilator vector a given by equation (17) is large near the stellar
surface, if it is included in the fractional structure difference at fixed
x, expressed by the second term on the right-hand side of equation
(29), its contribution to C is not negligible, however small we can
make K (R)

ψ,ρ and K (R)
ρ,ψ by adjusting the coefficients cn,l. This can be

understood explicitly from the following expression for the projec-
tion of the annihilating vector function a onto the kernels of C:∫
K

(R)
ψ,ρ

d lnψ
d ln r

dx +
∫
K

(R)
ρ,ψ

d ln ρ
d ln r

dx

=

∫
4πR3 x2ρ

3M
d ln ρ
d ln r

dx = −1 , (30)

which can be derived from equations (23), (24), (7), and (5), assum-
ing that density vanishes, or is at least negligible, at the surface. Evi-
dently, that projection is not small. In other words, the assumption of
negligible contribution from C cannot be justified without adjusting
the decomposition given by equation (29).

To obtain an appropriate adjustment we explicitly distinguish the
seismologically accessible element from the annihilator vector thus:


δrψ

ψ

δr (Gρ)
Gρ

 =


δrψ

ψ

δr (Gρ)
Gρ


ker

+


δrψ

ψ

δr (Gρ)
Gρ


a

, (31)

where
δrψ

ψ

δr (Gρ)
Gρ


ker

:=
∑
n,l

kn,l

K(n,l)
ψ,ρ

K(n,l)
ρ,ψ

 (32)

is the seismologically estimated accessible element of the actual
structure difference (δrψ/ψ, δr (Gρ) / (Gρ)) that lies in the kernel
space, from which we wish to achieve a reliable estimate of C.
Equation (32) is sometimes called a spectral expansion (e.g. Sec-
tion 41.1.1 of Unno et al. 1989). Note that the second term on the
right-hand side of equation (31) can generally include not only a
term proportional to a, but also other vectors in the annihilator. We
note also that (δrψ/ψ, δr (Gρ)/Gρ)ker corresponds to the projection
of the structure difference onto the kernel space. The reason why it
is seismologically accessible is that the right-hand side of equation
(3), without the surface term S n,l, can be interpreted as a nontrivial
inner product of the structure difference with the kernel vectors. On
substituting equations (29) and (31) into equation (21), we obtain
with the help of equation (30)

C = Cker −
δR
R
+

∫
4πR3 x2ρ

3M

(
δr (Gρ)

Gρ

)
a

dx , (33)

in which

Cker :=
∫
K

(R)
ψ,ρ

(
δrψ

ψ

)
ker

dx +
∫
K

(R)
ρ,ψ

(
δr (Gρ)

Gρ

)
ker

dx . (34)

Since Cker depends on only the seismologically accessible element,
we may adopt as the fundamental assumption of the inversion proce-
dure in Section 4.1 that Cker can be made negligibly small by adjust-
ing the coefficients cn,l appropriately if we have a sufficient number
of eigenmode kernels with different characters. Since the estimate

for δR/R given by equation (26) is meaningful only when C is neg-
ligible as a whole, we interpret, based on equation (33), that it is the
estimate in the case where δR/R is set to(
δR
R

)
interpret

=

∫
4πR3 x2ρ

3M

(
δr (Gρ)

Gρ

)
a

dx . (35)

Seemingly paradoxically at first, equation (35) appears to imply that
the relative difference in the scale factor is determined by the ele-
ment of the density-profile difference that is not accessible to the
eigenfrequencies. Of course, that is fully consistent with the isospec-
tral nature of the problem that is discussed in Sections 3.2 and 3.3.

Finally, we note that the minimization of the influence of the con-
taminating integral C in expression (20) for δR/R answers question
(ii) at the end of Section 3.2.

4.3 Mode-set independent interpretation

Because the annihilator necessarily depends on the mode set avail-
able, so does the interpretation given by equation (35). To obtain
an expression for δR/R that is only weakly dependent of the mode
set, we consider there to be such a large variety of modes available
that the annihilator space can be assumed to be composed of only
the vector a defined by equation (17) – together, of course, with
the highly oscillatory functions which we accept cannot be resolved,
and which accordingly we ignore. This assumption permits replac-
ing equation (31) by

δrc
c

δr(Gρ)
Gρ

 =


δrc
c

δr(Gρ)
Gρ


ker

−
δR
R

a (36)

(cf. equation (29)). Recognizing that both components of a are typ-
ically quite large near the surface, and that the frequency kernels,
which are the constituents of the spectral expansion, are very small,
we neglect the first term on the right-hand side of equation (36) and
are led to the estimates

(
δR
R

)
c

:= lim
x0→xsurf

δrc
c

(x0)

−
d lnψ
d ln r

(x0)
(37)

and

(
δR
R

)
ρ

:= lim
x0→xsurf

δr(Gρ)
Gρ

(x0)

−
d ln ρ
d ln r

(x0)
. (38)

We may expect equation (38) to converge faster than equation (37)
because |d ln ρ/d ln r| is much larger than |d lnψ/d ln r| in realistic
stellar structures. In fact, |d lnψ/d ln r| can actually be quite small in
the vicinity of the temperature minimum, in which case our argu-
ment formally breaks down because equation (37) is not well satis-
fied.

Note that by taking the inner product of equation (36) with a, we
obtain(
δR
R

)
integral

:=

lim
x0→xsurf

−1
IA(x0)

∫ x0

0

(
δrc
c

d lnψ
d ln r

+
δr(Gρ)

Gρ
d ln ρ
d ln r

)
dx , (39)

in which IA(x0) is defined by equation (19). One might expect this
expression to be more robust because it is somewhat less susceptible
to the details of the relatively small-scale variation of the structure
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Figure 2. Estimates of δR/R given by equation (38) (blue) and equation (39)
(red) relating a target theoretical solar model to a reference model, model S of
Christensen-Dalsgaard et al. (1996), plotted against the value x0 of r/Rph in
the outer layers. Here, Rph means the photospheric radius. The target model
is essentially model 1 of Houdek & Gough (2007), scaled to a photospheric
radius 1.0001 Rph. Additional information about that model is provided in
Section 6.1.

of the star near its surface (see Section 6.2). That is indeed the case,
as is illustrated in Fig. 2, in which the right-hand sides of equations
(38) and (39), obtained from the difference between two theoretical
solar models, are plotted against x0 in the outer layers. We have not
included a corresponding estimate from equation (37), but merely
report that it oscillates more wildly than the estimate from equation
(38). We emphasize that the resulting total radius is, in principle,
independent of the reference model from which it was obtained.

4.4 Relation to the acoustic radius

We finally consider how to interpret (δR/R)ac, given by equation
(26), in terms of the seismic radii, which are introduced in Section 2.
As is illustrated by Takata & Gough (2003), the density profile near
the surface, where the kernels start to decay outwards in response
to acoustic reflection, is crucial in determining the p-scaled radius
difference δR/R; that is true also for the f-scaled radius (Schou et al.
1997; Dziembowski et al. 2001). It is therefore clear that the den-
sity profile in the vicinity of the upper turning points is the most
important characteristic for determining the p-scaled radius. In fact,
it tells us that the difference in the p-scaled radius can be interpreted
as the homologous difference in the density profile around the up-
per turning points. This means that, if the density ρ itself becomes
much smaller than the density difference δrρ near the surface, the
inversion procedure (without the total mass constraint) attributes the
large relative difference δrρ/ρ to the homologous difference so that
the scaled difference δx(Gρ)/(Gρ) is prevented from being too large
near the surface. It seems as if the inversion procedure adjusts the
scale factor R to render the assumption of the linearization to be as
near to being valid as possible.

In order to understand further the relation between the density
and the radius difference, we summarize the density profile near the
surface of the Sun based on model S. The atmosphere around the
temperature minimum, which is located ∼ 500 km above the photo-
sphere, can be well approximated by an isothermal structure, which
implies the density decreases exponentially outwards with a constant

scale height. The scale height gradually gets larger with diminishing
height above the photosphere, where it is approximately equal to
180 km (2.6 × 10−4 in fractional radius). Beneath the photosphere,
it first increases very rapidly until it reaches its local maximum at a
depth of ∼ 80 km below the photosphere, and then decreases steeply
until it takes its local minimum at a depth of ∼ 250 km, after which
it turns to increase inwards mildly. Note that the seismic radius Rac,
which was described in Section 2, is located very close to the local
maximum of the density scale height. Because physical processes in
the atmosphere can be understood relatively well, we may assume
that the density-profile difference between the Sun and the refer-
ence model is small between the photosphere and the temperature
minimum, except for a possible displacement due to the position
difference in the photosphere. Since Rph is quite close to Rac, the dif-
ference in the atmosphere can largely be removed by stretching (or
contracting) the radial coordinate of the reference model to make Rac

consistent with the Sun. This essentially corresponds to eliminating
the annihilator component, which is represented by the second term
on the right-hand side of equation (36), from the density difference.
We thus identify(
δR
R

)
ac
=
δRac

Rac,r
(40)

(cf. equation (1)). Note that there could remain a small difference in
the density structure above Rac, even after the adjustment. This may
originate from uncertainties in the description of the superadiabatic
convective layers, which contain Rac.

5 STRUCTURE INVERSIONS WITH RADIUS
DIFFERENCE

Because in conventional structure inversions the difference between
the photospheric radius of the Sun and that of the reference model is
usually ignored (see Richard et al. 1998), it behoves us now to offer
a modification. We concentrate particularly on inversions for sound
speed and density. We expand, in Sections 5.1 and 5.2, a method
to obtain inferences about δxc/c and δx(Gρ)/(Gρ) which depend on
δR/R only implicitly through the definition of x = r/R; then we can
determine the radius difference δR/R independently by the method
described in Section 4.

5.1 Formulation of the sound-speed inversion

The basic equation of the analysis can be obtained as a linear com-
bination of equations (3) and (6), using equations (4) and (A15),
yielding∑
n,l

en,l
δνn,l

νn,l
=

∫
K (c)

c,ρ
δxc
c

dx +
∫
K (c)
ρ,c
δx(Gρ)

Gρ
dx

+

(
1 −

∫
K (c)

c,ρ dx
)
δR
R
−

1
3
δ(GM)

GM
+ S , (41)

in which K (c)
c,ρ and K (c)

ρ,c are defined by(
K

(c)
c,ρ

K
(c)
ρ,c

)
:=

∑
n,l

en,l

(
K(n,l)

c,ρ

K(n,l)
ρ,c

)
+

(
0

4πR3 x2ρ
3M

)
. (42)

Here, en,l are potential inversion coefficients. Within the framework
of the SOLA inversion (Pijpers & Thompson 1992) an inference
about the sound speed at the fractional radius xt can be made by
minimizing the quantity

χ2
c :=

∫ [
K (c)

c,ρ − T (x; xt)
]2

dx + αc

∫ (
K (c)
ρ,c

)2
dx + βcσ

2 (43)
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under the unimodular normalization condition∫
K (c)

c,ρ dx = 1 (44)

together with the vanishing of the surface term. Here the target ker-
nel T (x; xt) is usually taken to be a Gaussian function centred at
x = xt with an adjustable width chosen so as to limit undue magnifi-
cation of the data errors. Positive constants αc and βc are adjustable
parameters, and the formal error σ is still given by equation (27)
(with cn,l replaced by en,l).

In deriving equation (41) we have transformed the dependent vari-
able δxψ in equation (3) to δxc according to δxψ/ψ = δxc/c − δR/R,
partly because c is of greater interest to astrophysicists, and, inter-
estingly, because the influence of δR/R is explicitly removed from
equation (41) by condition (44), which is adopted also, both here
and in subsection 3.4, as a convenient normalization of the localized
averaging kernel.

What we obtain by minimizing χ2
c are the inversion coefficients

en,l, from which the difference in the sound speed in the vicinity of
xt is estimated byδxc

c


OLA

:=
∑
n,l

en,l
δνn,l

νn,l
+

1
3
δ(GM)

GM
(45)

with the formal error σ. The averaged sound-speed difference is to
be regarded as a function of x. Since the product GM of the Sun is
measured very accurately (see Table 1), we can neglect the second
term on the right-hand side of equation (45). Correspondingly, the
relative error σGM contributes little to the formal error σ in equation
(27). In fact, expressions (43) and (44) do not look new at all because
both of them are also found in conventional inversions. The only dif-
ference is that the coefficient of the total mass constraint (6) is now
fixed at 1/3 in the current formulation when we make the linear com-
bination (41), whereas it is determined by minimizing a quantity like
χ2

c in equation (43) in conventional inversions. We should stress that
by repeating the argument presented in Section 4.2 it follows that
the interpretation of δR/R here is the same as that given by equation
(35); and it applies also for the density inversion addressed in the
next section.

5.2 Formulation of the density inversion

Unlike in the sound-speed inversion, we should not include in the
density inversion the total mass constraint (6), which contains a term
proportional to δR/R; we need only equation (3) to get inferences of
δx(Gρ)/(Gρ) without the explicit effect of δR/R. Actually, the pro-
cedure is simply the same as the conventional one without the to-
tal mass constraint. The most important difference between the two
procedures is in the interpretation of the results: namely, what is re-
garded as δrρ/ρ in the conventional method should be recognized as
δx(Gρ)/(Gρ) in the new method. Because the gravitational constant
G is always multiplied by ρ, or, equivalently M, the uncertainty in
G itself cannot affect the inversion process. Therefore one cannot
determine by helioseismology alone whether or not δG is zero.

6 NUMERICAL TESTS

In this section, we test, based on theoretical models, the formulae for
the radius difference proposed in Section 4.3, and the inversion pro-
cedures for the radius, sound speed and density that are developed
in Sections 4.1, 5.1 and 5.2, respectively.

6.1 Reference and target models

We use two theoretical solar models in this section, model S of
Christensen-Dalsgaard et al. (1996) and model 1 of Houdek &
Gough (2007), which are adopted as reference and target models,
respectively. Model 1 has an age of 4.15 Gy and a heavy-element
abundance Z = 0.0200; no gravitational settling was incorporated
in its construction. By comparison, the age of model S is 4.60 Gy,
the initial heavy-element abundance is Z0 = 0.01963, and it has suf-
fered gravitational settling. The models have the same photospheric
radius: Rph = 695.99 Mm, consistent with the value of Allen (1973)
(see Table 1), and the surface luminosity (3.846× 1033 erg s−1); they
were constructed with different opacity tables. Both models were ex-
tended by smoothly adding isothermal atmospheres out to a radius
of 1.002 Rph. The radius variable of the target model was then mul-
tiplied by a factor 1.0001 in Section 6.2 and 0.9999 in Sections 6.3
and 6.4, and its density and sound speed were scaled homologously.

6.2 Expressions for the radius difference

We remark here simply that evidence for the accuracy of the two
explanatory formulae (38) and (39) is presented in Fig. 2. Both
expressions (38) and (39) are functions that flatten with increas-
ing height in the atmosphere; the integral expression (39) tends to
a constant, although −(δr(Gρ)/Gρ)/(d ln ρ/d ln r) declines slowly.
The relative difference between the photospheric radii of the two
models is 10−4, whereas the values obtained by the two formulae are
both about 0.9× 10−4. The 10−5 discrepancy, which arises at least in
part from the non-homologous difference between the two models
above their turning points, provides an indication of the accuracy of
these formulae.

6.3 Radius inversion

We have performed a test calculation to assess the accuracy of the
radius inversion method formulated in Section 4.1. To ensure that
the computed oscillation eigenfrequencies faithfully represent the
equilibrium models, slight adjustments were made to those mod-
els by recomputing hydrostatic balance to high precision (to order
10−6), retaining the variation of density and buoyancy frequency as
the defining properties. The relative differences in the sound speed
and density between the adjusted and original models are of the or-
der of 10−5 or less for 0.05 ≤ r/Rph ≤ 0.95, where Rph means pho-
tospheric radius, while the central values of the sound speed and
density are lower in the adjusted models by about 0.05 per cent and
0.1 per cent, respectively. In addition, these evolutionary models are
artificially extended by 0.5 per cent in radius to the higher layers in
the isothermal atmosphere in order to ensure that the mode kernels
have negligibly small amplitude at the outermost mesh point. The
structure of model 1 was shrunk homologously in the radial direction
by 0.01 per cent, and increased in density and sound speed at each
value of the mass coordinate by 0.03 per cent and 0.005 per cent,
respectively; that implies a very slight alteration to the equation of
state. Since the target model so constructed has the same mass as the
original model, but a smaller photospheric radius, by 0.01 per cent,
each mode frequency is augmented by 0.015 per cent. We point out
that the structure difference between the target and reference models
is not homologous.

The difference between the radii of the two models was inferred
from the difference in their adiabatic eigenfrequencies, which were
computed by the program described by Takata & Löffler (2004). The
mode set adopted was that of the MDI 360-day data (Schou 1999),
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Table 3. Test radius inversions based on the procedure outlined in Section
4.1 using the two theoretical models of Section 6.1, the target having been
shrunk homologously by 0.01 per cent, for various values of the maximum
spherical degree, lmax. The number of modes included in the data sets is
indicated by Nmode. Note that only p modes are used.

lmax Nmode (δR/R)ac × 104

120 1719 −1.0 ± 0.5
140 1847 −1.1 ± 0.4
160 1945 −1.2 ± 0.4
189 2008 −1.2 ± 0.4

excluding the f modes. We used in total 2008 eigenmodes with de-
grees ranging from l = 0 to 189, and having frequencies between
900 and 4600 mHz. The frequency error of each mode of the tar-
get model was assumed to be the same as that of the corresponding
mode in the MDI data. The surface term was ignored in this test.
The inferred value of (δR/R)ac is (−1.2 ± 0.4) × 10−4 for a set of the
parameters (αR, βR, γR) =

(
1, 300, 2 × 105

)
. Because the frequen-

cies used are free from observational errors, the uncertainties in the
inference (of 4 × 10−5) should be regarded as being only formal. On
the other hand, the systematic error, which originates from the ne-
glected nonlinear term of the order of (δνn,l/νn,l)2 in equation (3),
could be estimated to be of the order 10−5. In order to examine the
stability of the radius inversion, we change the maximum spheri-
cal degree, lmax, of the mode set, but keep the same values of αR,
βR and γR. Table 3 shows the results for lmax = 120, 140, 160 and
189. Although the results decrease slightly as lmax increases from
lmax = 120 to lmax = 189, they are all consistent with each other
within 2 × 10−5. From these test inversions, we conclude that the
inferred relative difference in the p-scaled radius is consistent with
that in the photospheric radius of −1 × 10−4 within the systematic
error.

6.4 Structure inversion

We validate the method of structure inversion, which is described in
Sections 5.1 and 5.2, based on the same theoretical models as those
in Section 6.3. We use all the p modes in the dataset, which is com-
mon with the MDI 360-day data, but exclude f modes. Fig. 3 shows
the results of the inversions for δxc/c (left panel) and δx(Gρ)/(Gρ)
(right panel). They are fully consistent with the true differences
(drawn by blue curves) in the both cases. In the left panel, we
observe that the values of δxc/c are nearly constant in the convec-
tive envelope (x ≳ 0.7), whereas the true difference of δrc/c (green
curve) increases in magnitude towards the surface. This is the di-
rect effect of scaling introduced in the inversion process. In fact, we
understand from equation (29)

δxc
c
=
δrc
c
+
δR
R

d ln c
d ln r

. (46)

The almost constant small values of δxc/c in the convection zone
beneath the superadiabatic boundary layer implies that the second
term on the right-hand side of equation (46) nearly cancels the first
term (the green curve in Fig. 3). The corresponding difference in the
density inversions can be understood similarly.

We then check any potential troubles in the conventional inversion
method. In Fig. 4, we present the inversion results for δrc/c (left
panel) and δrρ/ρ (right panel) based on the conventional method.
We assume that the target structure (shrunk model 1) has the same
radius as the reference model (model S). Two cases with and with-

out the total mass constraint are shown in each panel. The results
for δrc/c with the total mass constraint (red points in the left panel)
are consistent with the true difference (green curve). On the other
hand, those without the total mass constraint (blue points) are sys-
tematically larger by ∼ 10−4 than the true curve (green) for x ≲ 0.7,
whereas the difference becomes larger as x increases for x ≳ 0.7, and
reaches ∼ 2 × 10−3 for x = 0.96. These values are formally obtained
by shifting upward the red points in the left panel of Fig. 3 by 10−4.
This is because the conventional inversion for δrc/c without the to-
tal mass constraint should be reinterpreted as δxψ/ψ = δxc/c− δR/R
(cf. Section 3.2).

The conventional inversions for δrρ/ρ with the total mass con-
straint (red points in the right panel) are systematically smaller than
the true values (green curve) by ∼ 10−3 for x ≳ 0.7. These dif-
ferences could be understood as a nonlinear effect, which we may
estimate to be of the order of (δrρ/ρ)2 ∼ (3 × 10−2)2 ∼ 10−3 in
the relevant range of x. On the contrary, the results without the total
mass constraint (blue points) are larger than the true curve (green)
by ∼ 10−3 for x ≳ 0.8. These results are numerically the same as
those shown by red open circles in the right panel of Fig. 3 since
δrρ/ρ without the total mass constraint should be reinterpreted as
δx(Gρ)/(Gρ) (cf. Section 3.2) .

7 INVERSION OF OBSERVATIONAL DATA

In this section, we apply the inversion methods developed in Sec-
tions 4.1, 5.1 and 5.2, for the radius, sound speed and density, re-
spectively, to observational data. The frequency data set used in this
paper was obtained from the SOI/MDI instrument on the SOHO
spacecraft (Schou 1999). We use all the p modes included in the
available 360-day data. Again we adopt model S by Christensen-
Dalsgaard et al. (1996) as the reference model.

We do not include f modes in the analysis. This is chiefly because
p modes and f modes are sensitive to different radii as we discuss in
Section 2. In addition, a complication arises from the fact that the
surface terms for the two kinds of mode differ, because the charac-
teristics of the modes are rather different, partly because f modes are
uncompressed (cf. Section 4.1). Indeed, the functions F0 and F2 for
p modes are inapplicable to f modes, because f-mode frequencies
are intimately related to degree.

7.1 Structure inversion

In the left panel of Fig. 5, sound-speed inversions obtained by the
method described in Section 5.1 are presented. Since the claimed
relative difference between the radii of the Sun and the standard so-
lar model is of the order of 10−4 (Schou et al. 1997; Antia 1998),
its second-order effect on the new structure inversions is expected to
be of the order of 10−8, which is small enough to be safely ignored
at the current level of the accuracy of the eigenfrequency measure-
ments. Unlike in the case of the test inversions in Section 6.4, δxc/c
in the convective envelope increases in magnitude towards the sur-
face. This implies that this region can be described by different scal-
ing from what is adopted in these inversions, as we discuss in Section
8.1.

The corresponding density inversions are depicted in the right
panel of Fig. 5. We observe that the values of δx(Gρ)/(Gρ) are
mostly positive. This is understandable because we do not use the
total mass constraint. As in the case of the sound-speed inversions,
the values of δx(Gρ)/(Gρ) in the convective envelope tend to de-
crease towards the surface.
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Figure 3. Test structure inversions based on two theoretical models (cf. Section 5). One is model S of Christensen-Dalsgaard et al. (1996), which is used as
the reference model, while the other is model 1 of Houdek & Gough (2007), which is homologously shrunk by 0.01 per cent. The inversions for δxc/c and
δx(Gρ)/(Gρ) are shown in the left and right panels, respectively, as functions of the fractional radius x of the reference model, which is normalized by the
photospheric radius. In each panel, the red open circles with errorbars indicate the inversion results. The horizontal bars stand for the width of the averaging
kernels, while the vertical errorbars stand for the statistical errors that originate from the uncertainties in frequencies, which are assumed to be the same as those
of MDI 360-day data set. The blue curves denote the corresponding true differences; the green curves, which represent δrc/c and δrρ/ρ in the left and right
panels, respectively, are included for comparison.
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Figure 4. Test structure inversions by the conventional method, which does not consider the difference between the radii of target structure and the reference
model. The target and reference models are the same as those in Fig. 3. The left and right panels show the sound speed and density differences, respectively,
at fixed radius. The inversion results with (without) the total mass constraint are plotted by red (blue) open circles with errorbars, and the corresponding true
differences are drawn by green curves. The meanings of the horizontal axes and the errorbars follow Fig. 3.

7.2 Radius inversion

We perform the radius inversion following the method in Section
4.1. Although the absolute values of the two integrals in equation
(21) should be small enough not to affect the inversions, these terms
could be sources of systematic error in the final answers given
by equation (26). We estimate these integrals using the profiles of
δxψ/ψ and δx(Gρ)/(Gρ) obtained in the inversion without the total
mass constraint (cf. Section 5). The results are given in Table 4.

In Table 4, we also check the sensitivity of the inversions to the
numbers of terms included in the expansion of the surface-term func-
tions F0 and F2, which we denote by n0 and n2, respectively. We see
that the results are insensitive to both n0 and n2, provided they both
exceed 12. We adopt the last entry in Table 4 as the final answer of
the present study. To be conservative, we regard the 3-σ level of the

formal error as the uncertainty in the current estimate of the radius
difference between the Sun and the reference model. Hence we es-
timate that (δR/R)ac = (−3.1 ± 2.4) × 10−4. Combining this with
equations (1) and (40), we obtain the p-scaled (photospheric) radius
as Rp = 695.78± 0.16 Mm. Recall that, strictly speaking, this result
depends on assuming a homologous difference in the structure of the
outer layers of the Sun beyond the upper turning point of the p modes
included in the present study. Here, we have used the photospheric
radius of the reference model, Rph,r =695.99 Mm.

8 DISCUSSION

Although Schou et al. (1997) analysed f-mode frequencies to give
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Figure 5. Inversions for the structure of the Sun based on the MDI 360-day data. The method is described in detail in Section 5. The results for the sound
speed and the density multiplied by the gravitational constant are given in the left and right panels, respectively. The ordinate of each panel means the relative
difference of the solar values from those of the reference model at the fixed fractional radius, x. The meanings of the horizontal bars and the vertical errorbars
follow Fig. 3.

Table 4. Radius inversions using only the p modes. δR is the estimated ra-
dius scale of the Sun minus the radius scale of the reference, model S. Pa-
rameters n0 and n2 denote the numbers of terms in the expansions of the
surface-term functions F0 and F2 in equation (28), respectively; αR, βR and
γR are parameters in the formula (25) for χ2

R whose minimization determines
the coefficients cn,l; in all the cases they are fixed at αR = 1, βR = 102

and γR = 5 × 107. In the inversions, it was assumed that δ(GM)/(GM) = 0
as described after equation (26), because the relative error in the measure-
ment of GM⊙ is on the order of 10−11 (see Table 1). An estimate of the
error in (δR/R)ac is provided by σ; its value is rather ‘large’ as a result of
a trade-off with the suppression of the contaminating integrals of equation
(21) listed in the last two columns. Here, we define the cross-talk integrals
Cψ :=

∫
K

(R)
ψ,ρ δxψ/ψ dx and Cρ :=

∫
K

(R)
ρ,ψ δx(Gρ)/(Gρ) dx.

n0 n2 (δR/R)ac σ Cψ Cρ

12 0 −4.3 × 10−4 6 × 10−5 −6 × 10−5 −7 × 10−5

12 12 −3.1 × 10−4 7 × 10−5 −6 × 10−5 −6 × 10−5

20 20 −3.5 × 10−4 7 × 10−5 −6 × 10−5 −5 × 10−5

40 40 −3.1 × 10−4 8 × 10−5 −7 × 10−5 −5 × 10−6

Rf = 695.68 ± 0.03 Mm, the errors are dominated by the system-
atic errors. The corresponding 3-σ statistical errors are estimated
to be 0.02 Mm. Although their estimate has a smaller formal er-
ror than ours, their result may be sensitive to the description of
the subsurface layer of superadiabatic convection, as they point out
themselves. On the other hand, our analysis is expected to be al-
most free from that ambiguity, partly because we have used p modes
which are evanescent in the most turbulent region of the convec-
tion zone and partly because we have taken account of as many as
40 terms in the expansion of the surface term, which is expected
to remove the uncertainty concerning the subsurface structure to
a considerable extent. Dziembowski et al. (2000) also analysed f-
mode data, implying the relative difference between the f-mode
radii of the Sun and model S (Christensen-Dalsgaard et al. 1996) of
δRf/Rf = (−4.52±0.03)×10−4 (± one standard deviation), averaged
over nearly 3 years; the major variation in Rf appears to be an oscil-
lation with a 1-year period, which may suggest a susceptibility of the
analysis at the 10−5 level to an annual variation in the SOHO–Sun
distance resulting from, for example, pixel quantization or instru-

mental temperature variations, not to mention genuine solar-cycle
radius variation of the Sun.

Alternatively, Antia (2003) claims that the apparent time-variation
of the f-scaled radius could have been caused by a change in the
MDI/SOI instrument during the few-months ‘vacation’ of the SOHO
spacecraft in 1998 and 1999. Subsequently, Lefebvre & Kosovichev
(2005) and Lefebvre et al. (2007) studied the nonhomologous solar-
cycle variation of the subsurface layers based on the f-mode frequen-
cies. Rozelot et al. (2018) have reported another interesting result:
the f-mode frequencies are correlated with sunspot numbers over
nearly two cycles (∼ 22 years).

We find that the central value of our radius inversion lies between
the two direct observations quoted by Allen (1973) and Brown &
Christensen-Dalsgaard (1998), though the former of them is consis-
tent with our result at the 3-σ level of the error.

8.1 Sound-speed inversions in the convective envelope

We observe in the left panel of Fig. 5 that the sound-speed inversions
for x ≳ 0.7 decrease monotonically towards the surface. It is well
established that this region is composed of essentially adiabatically
stratified layers, in which p = Kργ1 with constant K. The sound
speed is then approximately described by

c2 ≈ (γ1 − 1) GM⊙

(
1
r
−

1
Rs

)
, (47)

which can be derived from the equations of hydrostatic equilibrium
under the assumptions of constant γ1 and constant mass enclosed
within radius r. Here Rs is the location of the phantom singularity
that was introduced in Section 2. The expression for δxc/c can be
derived from equation (47) as

δxc
c
≈

1
2

(
δγ1

γ1 − 1
−
δR
R

)
−

1
2Rs

(
δR
R
−
δRs

Rs

) (
1
r
−

1
Rs

)−1

. (48)

The growing trend in the sound-speed inversions can be interpreted
as a contribution from the second term on the right-hand side of
equation (48). Comparing the approximate relation (48) with a more
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accurate expression,

δxc
c
=
δxs c

c
+

(
δR
R
−
δRs

Rs

)
d ln c
d ln r

, (49)

in which xs = r/Rs, we may regard the first term on the right-hand
side of equation (49) as being almost constant, as one might expect.
Fitting equation (49) to the sound-speed inversion performed in Sec-
tion 7.1, we estimate, in particular,

δRs

Rs
−

(
δR
R

)
ac
≈ −0.0003 . (50)

This means that the position of the adiabatically stratified layers,
which is characterized by Rs, is located about 0.06 per cent deeper
in the Sun than in model S, whereas Rac, which is almost equal to
the photospheric radius, is smaller by only 0.03 per cent. The result
of δRs/Rs , (δR/R)ac means that the difference between the Sun
and model S is not homologous for x ≳ 0.7. This information would
be useful for our better understanding of the structure of the upper
convective layers in the Sun.

8.2 Remark on Basu

Basu (1998) performed conventional structure inversions using two
different reference models, one with the standard value of the pho-
tospheric radius, 695.99 Mm, the other with the smaller radius
Rph = 695.78 Mm. She found a significant difference between the
results, both in the sound-speed and in the density inversions. Her
demonstrations emphasize that so long as we adhere to conventional
inversions we must take care in interpreting the results. On the other
hand, by extending the inversion formulae so as to take account of
the uncertainties in the solar radius R⊙ and the product GM⊙ of the
gravitational constant and the solar mass, we have succeeded in car-
rying out inversions that are independent of the radius differences
(at least in the leading order). Note that the uncertainty in GM⊙ can
be neglected in practice because it is much smaller than the errors in
frequencies provided by current observations. We can say that our
method gives conservative answers, in the sense that it makes the re-
sults independent of the uncertainties in the radius R at the expense
of greater formal errors.

8.3 Uncertainty in the gravitational constant

In principle, the density inversions are affected by any error σG in
the gravitational constant, which is of the order of 10−5 (cf. Table 1),
although the formal errors in the right panel of Fig. 5 are larger by
about two orders of magnitude. Similarly, if there were a difference
in the gravitational constant G between the Sun and the reference
model, then the density inversions should be shifted by a constant
δG/G since

δxρ

ρ
=
δx(Gρ)

Gρ
−
δG
G

. (51)

8.4 Relation to asteroseismology

It is worth thinking about the application of the present technique
to the field of asteroseismology (cf. Gough & Kosovichev 1993;
Reese et al. 2012; Buldgen et al. 2019). The present method en-
ables us to perform the structure inversions that are independent of
the uncertainties in the total radius R if we know the product GM
of the gravitational constant and the total mass of the target star
accurately. If GM were not accurately known, but the radius R of

the star were measured, for example, by the interferometric observa-
tions (e.g. Kervella et al. 2004), it would still be possible to perform
the inversions for the structure difference and the total mass differ-
ence (if frequencies were available for a large variety of oscillation
modes). In fact, the inversions for δxψ/ψ and δx(Gρ)/(Gρ) can be ac-
complished using only equation (3), as is explained in Section 3.3.
In this case, we do not have to worry about any ambiguity in the
definition of the operator δx since the radius difference is known.
Then the mass difference δ(GM)/(GM) can be inferred by another
OLA-type inversion that utilizes the total mass constraint given by
equation (6). If, in the worst case, we know neither R nor the product
GM of the target star, we can estimate only the difference in GM/R3

by a procedure similar to that described above. A reliable estimate of
the surface gravity GM/R2 by spectroscopy (or the theoretical mass-
radius relation) then constrains both of the radius and the mass of the
target star. These days, the mass and radius of solar-like oscillators
are often estimated from the large frequency separation, ∆ν, and the
frequency of maximum power, νmax, based on the scaling relations.

Once the radius difference is known, the structure differences
δxψ/ψ and δx(Gρ)/(Gρ), which are inferred by equation (3), can be
defined without ambiguity.

8.5 The case of the large radius difference

We note in passing that the assumption that δR/R is small is not
actually essential, though it is implicitly made when we write down
equation (29). In fact, we can carry out a similar analysis even when
δR/R is not small, provided that the structure difference is nearly
homologous. Here the nearly homologous difference means that the
differences at fixed fractional radius in the dimensionless variables

ψ̃ :=

√
R3

GM
ψ (52)

and

ρ̃ :=
R3

M
ρ (53)

can be made small by adjusting the radius (scale factor) of the target
structure. Let us denote the radii R of the reference model and the
target structure by Rr and Rt, respectively. In this section, subscripts
r and t generally mean the quantities of the reference model and the
target structure, respectively. We do not assume |Rt − Rr| ≪ Rr. We
first set Rt = Rt,0, for which the corresponding difference operator at
fixed radius is denoted by δx,0. The value of Rt,0 can be chosen arbi-
trary so long as δx,0ψ̃ and δx,0ρ̃ are small. We then consider variation
in Rt as Rt = Rt,0 + δRt, in which we assume |δRt| ≪ Rt,0. The corre-
sponding difference operator at fixed fractional radius is denoted by
δx. After these preparations, we may repeat the analysis in Section
4.3, but with ψ, Gρ, δR/R and δr replaced by ψ̃, ρ̃, δRt/Rt,0 and δx,0.
Equation (38), in particular, is reduced to

δRt

Rt,0
= lim

x0→xsurf

δx,0ρ̃

ρ̃r
(x0)

−
d ln ρr

d ln r
(x0)

, (54)

which is equivalent to

lim
x0→xsurf

δxρ̃

ρ̃r
(x0)

−
d ln ρr

d ln r
(x0)
= 0 . (55)
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We can easily understand how the scale factor Rt is included in equa-
tion (55) by remembering that

δxρ̃(x) =
R3

t

Mt
ρt (xRt) −

R3
r

Mr
ρr (xRr) . (56)

The scale factor Rt, which can be very different from Rr, is identified
as the zero point of the left-hand side of equation (55), regarded as
a function of Rt. That, of course, is provided that the target and the
reference have essentially the same outer atmospheres, as is the case
for the models studied in Section 6.2. This analysis, which allows
for a large radius difference, must be of use when we think about
inversions of stars other than the Sun, whose radii we often do not
know well.

9 CONCLUSION

In this paper, we have extended the inversion formulae to consider
the difference in the radii of the reference model and the Sun. We
have performed inversions for the radius of the Sun, and estimate
the solar photospheric radius (which we quote with 3-σ statistical
errors) to be 695.78 ± 0.16 Mm from only p-mode frequencies. We
have also performed structure inversions for the sound-speed and
density profiles of the Sun independently of the uncertainties in the
solar radius. The sound-speed inversion suggests that the positions
of the photosphere and the adiabatically stratified layers in the con-
vective envelope differ nonhomologously from those of the standard
solar model.
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APPENDIX A: DERIVATION OF THE INVERSION
FORMULAE

Here we derive equation (3) for the fractional difference δνn,l/νn,l be-
tween the solar frequencies and the eigenfrequencies of a reference
model in terms of the corresponding structural differences in sound
speed and density. First, we introduce the dimensionless variables,

ν̃n,l :=

√
R3

GM
νn,l , (A1)

c̃ :=

√
R

GM
c (A2)

and

ρ̃ :=
R3

M
ρ . (A3)

The equations of hydrostatic equilibrium and mass conservation can
be rewritten in terms of these dimensionless variables, and are quite
similar to the original forms. With these equations, the derivation
of the kernels for dimensionless sound-speed c̃ and dimensionless
density ρ̃ is parallel to that for the dimensional variables, for which
readers can refer, for example, to the article by Gough & Thompson
(1991). The difference is that we should compare the variables at the
fixed fractional radius x = r/R instead of the fixed absolute radius r.
The resulting integral expression is

δν̃n,l

ν̃n,l
=

∫
K(n,l)

c̃,ρ̃
δxc̃
c̃

dx +
∫

K(n,l)
ρ̃,c̃

δxρ̃

ρ̃
dx + S n,l , (A4)

where S n,l is introduced to accommodate the uncertain physics in
the near-surface layers of the star. It is therefore only very weakly
dependent on the degree l of the mode. The reason for this is be-
cause the ray paths of the high-order p modes are nearly vertical in
the near-surface layers, irrespective of degree. Noting that the ker-
nels for the dimensional variables are dimensionless, we can easily
appreciate that

K(n,l)
c̃,ρ̃ = K(n,l)

c,ρ and K(n,l)
ρ̃,c̃ = K(n,l)

ρ,c : (A5)

the kernels for the dimensionless variables are identical to those for
the dimensional variables. Note that equation (A4) holds even for
the case in which the real Sun and the reference model have different
radii.

We next rewrite equation (A4) in terms of the dimensional vari-
ables by using the definitions (A1), (A2) and (A3):

δν̃n,l

ν̃n,l
=
δνn,l

νn,l
+

3
2
δR
R
−

1
2
δ(GM)

GM
, (A6)

δxc̃
c̃
=
δxc
c
+

1
2
δR
R
−

1
2
δ(GM)

GM
(A7)

and

δxρ̃

ρ̃
=
δx(Gρ)

Gρ
+ 3

δR
R
−
δ(GM)

GM
. (A8)

Introducing these relations together with equation (A5) into equation
(A4) yields

δνn,l

νn,l
=

∫
K(n,l)

c,ρ
δxc
c

dx +
∫

K(n,l)
ρ,c

δx(Gρ)
Gρ

dx

+
δR
R

(
1
2

∫
K(n,l)

c,ρ dx + 3
∫

K(n,l)
ρ,c dx −

3
2

)
−
δ(GM)

GM

(
1
2

∫
K(n,l)

c,ρ dx +
∫

K(n,l)
ρ,c dx −

1
2

)
+ S n,l . (A9)

We can go further by comparing equation (A9) with the correspond-
ing formula used for the conventional inversion, which is a particular
case of equation (A4):

δνn,l

νn,l
=

∫
K(n,l)

c,ρ
δrc
c

dx +
∫

K(n,l)
ρ,c

δrρ

ρ
dx + S n,l . (A10)

We now emphasize that we must be able to recover equation (A10)
from equation (A9), which is more general. To do so, all we need
should be only to set δG = 0 and δR = 0 (hence δx = δr), because
equation (A10) has been derived without assuming δM = 0. How-
ever, it is found that the substitution of those two conditions into
equation (A9), and the replacement of δx by δr, are not sufficient
to recover equation (A10) unless the terms multiplying δ(GM)/GM
cancel. In other words, the identity

1
2

∫
K(n,l)

c,ρ dx +
∫

K(n,l)
ρ,c dx =

1
2
, (A11)

must be satisfied for all (n, l). From a physical point of view, equation
(A11) reflects the following homologous relation of the adiabatic
oscillations of stars: if we multiply both the squared sound-speed
profile and the density profile of a stellar model by the same constant
factor, keeping their shapes fixed as functions of the fractional radius
x, all of the squared eigenfrequencies change by the same factor.
Using identity (A11), equation (A9) can be written

δνn,l

νn,l
=

∫
K(n,l)

c,ρ
δxc
c

dx +
∫

K(n,l)
ρ,c

δx(Gρ)
Gρ

dx

−
δR
R

∫
K(n,l)

c,ρ dx + S n,l . (A12)

This equation is identical to the following more compact expres-
sions:
δνn,l

νn,l
=

∫
K(n,l)

c,ρ
δx(c/R)

c/R
dx +

∫
K(n,l)
ρ,c

δx(Gρ)
Gρ

dx + S n,l (A13)

and, more pertinently,

δνn,l

νn,l
=

∫
K(n,l)

c,ρ
δxψ

ψ
dx +

∫
K(n,l)
ρ,c

δx(Gρ)
Gρ

dx + S n,l , (A14)

which follows by noticing the relation,

δxr
r
=
δx(Rx)

Rx
=
δR
R

. (A15)

Equation (A14) implies K(n,l)
ψ,ρ = K(n,l)

c,ρ and K(n,l)
ρ,ψ = K(n,l)

ρ,c in equation
(3); neither contains the radius difference δR explicitly.

APPENDIX B: DERIVATION OF THE ANNIHILATOR
RELATION

Associate with a single structure two different scale factors R and R′.
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Let us call the structure with scale factor R model A and that with R′

model B. The difference in the scale factors is given by

δR := R′ − R , 0. (B1)

To relate the radius r in model A and radius r′ in model B at the
same fractional radius, we set

r′/R′ = r/R , (B2)

from which

r′ =
R′

R
r =

(
1 +

δR
R

)
r . (B3)

Therefore the difference between models A and B in any quantity f
at the same fractional radius x is estimated as

δx f := f (r′) − f (r) =
δR
R

d f
dr

r =
δR
R

d f
d ln r

, (B4)

which is valid in the linear regime. Hence we have

δx f
f
=
δR
R

d ln f
d ln r

. (B5)

Using this formula, equation (3) reduces to

δνnl

νnl
=
δR
R

(∫
K(n,l)
ψ,ρ

d lnψ
d ln r

dx +
∫

K(n,l)
ρ,ψ

d ln ρ
d ln r

dx
)

+ S nl , (B6)

where we have used

d ln(Gρ)
d ln r

=
d ln ρ
d ln r

, (B7)

because G is constant. Since the two structures are physically the
same, we necessarily have δνnl/νnl = 0, and we can ignore the sur-
face term. Furthermore, because δR/R , 0, we obtain

0 =
∫

K(n,l)
ψ,ρ

d lnψ
d ln r

dx +
∫

K(n,l)
ρ,ψ

d ln ρ
d ln r

dx , (B8)

for any (n, l), which is equation (7). Strictly speaking, we can show
that equation (B8) is correct only if K(n,l)

ρ,ψ = 0 at the surface.
Like equation (A14), equation (B8) is directly related to the ho-

mology relation explained in the main text that adiabatic eigenfre-
quencies are invariant under uniform stretching in the radial direc-
tion and appropriate scaling of the structure.

APPENDIX C: INVERSION FORMULAE AND KERNEL
IDENTITIES FOR VARIOUS INVERSION VARIABLES

In the discussion in the body of the paper we have adopted the sound
speed c and density ρ for inversion variables. In a manner analogous
to that in Appendices A and B, we can derive corresponding formu-
lae and identities for any other seismologically independent pair of
structure variables. The procedure is summarized in this subsection.
The outcome is useful not only for helioseismological inversion, but
also when we study the seismological inversion for the structure of
other stars (cf. Gough & Kosovichev 1993; Takata & Montgomery
2002), in which case we usually do not know the precise values of
the mass and radius. The kernels for variables other than c and ρ can
be obtained by the method described by Gough (1996). For brevity
we now omit the surface term in the inversion formulae

C1 Density and first adiabatic exponent

If we choose the density ρ and the first adiabatic exponent γ1 as
inversion variables, we have

δνn,l

νn,l
=

∫
K(n,l)
ρ,γ1

δx(Gρ)
Gρ

dx +
∫

K(n,l)
γ1 ,ρ

δxγ1

γ1
dx . (C1)

With this variable pair, terms explicitly containing the difference in
mass or radius that might have arisen in the derivation of the kernels
cancel out, as is the case in the derivation of equation (3). We need
pay attention only to the fact that the difference between the refer-
ence model and the target should be taken not at the fixed absolute
radius r but at fixed fractional radius x, whose definition implicitly
includes the radius R. Essentially the same discussion as that in Ap-
pendix A leads us to the identity,∫

K(n,l)
ρ,γ1

dx =
1
2
, (C2)

which corresponds to equation (A11); the annihilator relation,∫
K(n,l)
ρ,γ1

d ln ρ
d ln r

dx +
∫

K(n,l)
γ1 ,ρ

d ln γ1

d ln r
dx = 0 , (C3)

is obtained by the same scaling argument as that given in Appendix
B. Equation (C2) is equivalent to equation (14) of Reese et al.
(2012).

C2 Adiabatic sound-speed and first adiabatic exponent

When c2 and the first adiabatic exponent γ1 are adopted as inversion
variables, the integral formula for the relative frequency perturbation
is revised as follows:

δνn,l

νn,l
=

∫
K(n,l)

c2 ,γ1

δxψ
2

ψ2 dx +
∫

K(n,l)
γ1 ,c2

δxγ1

γ1
dx

+

(
1
2
−

∫
K(n,l)

c2 ,γ1
dx

) (
δ(GM)

GM
− 3

δR
R

)
, (C4)

which corresponds to equation (A9). In equation (C4), we have used
K(n,l)
ψ2 ,γ1
= K(n,l)

c2 ,γ1
and K(n,l)

γ1 ,ψ2 = K(n,l)
γ1 ,c2 . There are two new terms on the

right-hand side to take account of the mass and radius differences.
Applying the scaling discussed in Appendix B leads to the analogue
of equation (B8):∫

K(n,l)
c2 ,γ1

(
d ln c2

d ln r
+ 1

)
dx +

∫
K(n,l)
γ1 ,c2

d ln γ1

d ln r
dx =

3
2
. (C5)

We have only one kind of kernel identity in this case because the
coefficient of the mass difference does not vanish in equation (C4),
unlike the case in which c and ρ are adopted as inversion variables.
This is, in turn, because we need to assume the total mass constraint
to derive the expressions for K(n,l)

c2 ,γ1
and K(n,l)

γ1 ,c2 (e.g. Gough 1996).

C3 Isothermal sound-speed and first adiabatic-exponent

We consider the case where the inversion variables are set to the
isothermal sound-speed, u := p/ρ, and the first adiabatic exponent
γ1. Substituting the trivial relations, K(n,l)

c2 ,γ1
= K(n,l)

u,γ1 and K(n,l)
γ1 ,c2 =

K(n,l)
γ1 ,u − K(n,l)

u,γ1 , into equations (C4) and (C5), yields

δνn,l

νn,l
=

∫
K(n,l)

u,γ1

δx(u/r2)
u/r2 dx +

∫
K(n,l)
γ1 ,u

δxγ1

γ1
dx

+

(
1
2
−

∫
K(n,l)

u,γ1
dx

) (
δ(GM)

GM
− 3

δR
R

)
(C6)
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and∫
K(n,l)

u,γ1

(
d ln u
d ln r

+ 1
)

dx +
∫

K(n,l)
γ1 ,u

d ln γ1

d ln r
dx =

3
2
, (C7)

respectively.
We finally make a remark about the difference between c2 and

u. Since the analyses in Appendices C2 and C3 are essentially the
same, it might possibly be accepted that it makes little difference
whether we choose c2 or u as one of the inversion variables. This
is, however, not always true. As pointed out by Däppen et al.
(1991), for example, when combined with the helium mass frac-
tion Y , u is usually preferred over c or c2 for the accompanying
inversion variable because it avoids putative divergences in the c2

kernel in ionization zones of abundant elements at locations where
(∂lnγ1/∂lnρ)p,Y = 1, thereby obviating unnecessary mathematical
complication.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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